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Supplementary Methods 

 

Illustration of the wind rotation scheme.  

  

 

Supplemental Information Figure 1.  Schematic of the rotation procedure, shown considering 

two days:  Day 1 in which the wind is out of the north, and Day 2 in which the wind is out of the 

southeast.  The location of the observation on Day 2 (green) is adjusted through a rotation about 

the Test source so that the wind is effectively out of the north (gray).  In this way measurements 

from many days can be analyzed together
1,2

. 
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Addition Information on Emissions Mapping. 

 

 

Supplemental Information Figure 2.  Idealized rotated SO2 distribution indicating the 

downwind and upwind averaging regions, shown as the the two rectangles defined by a, b1, and 

b2.  The SO2 source is located at (0,0). The downwind average column is 0.85 DU and the 

upwind average column is 0.08 DU, giving an downwind-upwind difference of 0.77 DU. 
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Supplemental Information Figure 3.   (a) Average SO2 column amount over the Montour 

power plant in central Pennsylvania, U.S. (41.07N; 76.67W), with the power plant located here 

at (0,0); (b) The average SO2 column after a rotation about the blue dot (the location of the 

power plant) in panel (a); (c) the average column after a rotation about the black dot, 20 km east 

of the location of the power plant, in panel (a).  The rotated distributions in panels (b) and (c) are 

such that the wind is from the top of the plot and the boxes in panels (b) and (c) show the regions 

averaged to calculate the downwind and upwind average columns. 

 

There are several potential sources of error that need to be considered when determining 

the overall uncertainty of the emissions.  These are summarized in Supplemental Information 

Table  1, and are grouped into three categories:  in the determination of the vertical column 

density (VCD), or column, those that come from the fit of the column distributions, and those 

related to the ECMWF wind information and its usage. 

The OMI SO2 VCDs are subject to uncertainties.  Each VCD measurement possesses a 

random error on the order of 0.5 DU (ref. 3).  We assume here that these can be neglected since 

we are averaging over a large number of individual measurements.  However, there is also an 

uncertainty from the air mass factors (AMFs) used to convert slant column density (SCD) into 

VCD.  Based on a sensitivity study performed in McLinden et al.
4
, uncertainties in surface 

reflectivity, surface pressure, ozone column, and cloud fraction and pressure all combine for an 

uncertainty of 18%.  The uncertainty from profile shape is more difficult to evaluate.  For this, 
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the sensitivity in AMFs was assessed by recalculating for different SO2 profile assumptions 

including:  exponentially decreasing number densities to the top of the boundary layer
5
, and 

fixed SO2 layer thicknesses of 1, 1.5, and 2 km.  The standard deviation of these variations, 18%, 

was used to quantify this uncertainty. The AMF calculations assumed a Lambertian surface and 

we estimate this approximation could lead to a 10% uncertainty.  We estimate the uncertainty 

due to aerosols by adjusting the optical depth of the aerosol layer
6
 by ±0.25 about its assumed 

mean value (to a minimum of 0 and a maximum of 1) and recalculating AMFs.  This changes the 

AMF by 10%.  Based on these, the overall AMF uncertainty (which translates directly into 

emission uncertainty) was found to be 27%.   

There is a statistical uncertainty from the fit related to noise in the OMI observations and 

the representativeness of the two-dimensional functional form
2
.  We determined here that this 

uncertainty can be well quantified at 15 kt/yr + 5%.  To determine the uncertainty arising from 

the use of an incorrect lifetime or width parameter, we recomputed emissions using the 10
th

 and 

90
th

 percentile values from the lifetime (shown in Supplemental Information Figure 4) and width 

parameter distributions for a subset of the emissions sources analysed.  Combined, these led to 

an uncertainty of 35%.  We also examined the impact of modifying the domain over which the 

VCDs are fit.  Different combinations, varied by ±20 km, were attempted and changes no larger 

than 13% were found.  The data filtering choices, cloud fraction and snow/snow-free pixels, 

were found each have a small impact on the emissions. 
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Supplemental Information Table  1.  Uncertainty budget for annual emission rates from a 

single source. 

Error source Source Category Magnitude Note 

Air mass factor Variability VCD 18% Considers random errors in cloud 

fraction, cloud pressure, surface 

albedo, surface pressure, column 

ozone, and profile shape following 

McLinden et al.
4
  

 Variability VCD 18% Profile shape 

 Uncertainty VCD 14% Bidirectional reflection 

distribution function (10%) and 

aerosol (10%)  

Mass  Linear fit Fit 5% Statistical errors from the 

regression model. 

 Uncertainties in 

OMI retrieved 

values 

Fit 10-20 kt/yr  

Lifetime and 

Width 

Uncertainty Fit 35% Based on using lifetimes of 3 and 

10 hours and widths 12 and 31 km; 

these represent the 10
th
 and 90

th
 

percentiles   

Two-

dimensional fit 

parameters 

Uncertainty Fit 13% Fitting limits; assessed by 

adjusting up/down wind and cross-

wind fitting limits by ±20 km 

Cloud fraction Uncertainty Fit 1% Changed maximum cloud fraction 

to 0.1, 0.3 

Snow on ground Uncertainty Fit 2% Impact of including measurements 

of snow-covered pixels 

Wind-speed and 

direction 

Variability Winds 4% Determined by applying random 

errors in wind speed (2 m/s) and 

direction (15)  

 Uncertainty Winds 6% Determined by applying 

systematic errors in wind speed (2 

m/s) and direction (10) 

Wind height Uncertainty Winds 20% Systematic effect from taking the 

winds at a different height; wind 

height adjusted by ±500 m 

Source of wind 

information 

Uncertainty Winds 7% Change in emissions using winds 

from NCEP
7
 reanalysis for one test 

source 

Total   50% 

> 60%   

For sources above 100 kt 

For sources under 50 kt 
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Another source of error related to emissions retrieval are errors in the ECMWF ERA-

interim reanalysis
8
 wind-speed and direction, as well as an error related to the height of the wind.  

The impact of uncertainties in wind speed and direction were estimated by artificially adding 

random and/or systematic errors in speed and direction (see Supplemental Information Table  1) 

and recalculating emissions.  The use of winds at an inappropriate altitude was quantified by 

changing the height of the winds used by ±500 m and then recalculating.  Wind height appears to 

be one of the larger sources of error (20%). The use of an alternative source of wind information, 

NCEP
7
, was also examined for a small subset of sources, with a modest (7%) impact on 

emissions. 

 Combining these components, we estimate that the overall single-source uncertainty in 

annual emissions to be 50% for a larger source and about 60% for a smaller source.  These 

values appear to represent more of an upper limit as comparisons with reference data made here 

(see below) indicate differences in the range of 20-30% are more typical.  

 Parts of China have SO2 emissions dense enough that they can no longer be considered as 

(multiple) point sources.  Here we use maxima in the source map and perform an emissions 

calculation that roughly represents a regional emission rate.  While these estimates are expected 

to have a larger uncertainty, we note that national OMI-emission totals are still roughly 50% of 

the bottom-up inventory values.  
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Supplemental Information Figure 4.  The distribution of the estimated decay time (or, 

effective lifetime) estimated from the fit of rotated OMI data for the 2005-2007 period using the 

methodology of Fioletov et al.
10

  Data from 215 emission sources that produced estimates with 

small uncertainties were used for the plot. The main statistical characteristics of the distribution 

are also shown. 

 

Inventory evaluation.  A comparison of emissions derived using this approach to those from the 

HTAP inventory in the eastern U.S. is shown in Supplemental Information Figure 5.  Here we 

integrate the HTAP emissions over all grid-boxes within a radius of 50 km about the source 

location.  There is good correlation (correlation coefficient of 0.86) and the slope is 0.85.  These 

values are well within the uncertainties from Supplemental Information Table  1, and suggest 

that the satellite emissions have a slight low bias.  However, the slope is somewhat sensitive to 

the integration radius used.  A more direct comparison was conducted in Fioletov et al.
2
 using 

power plant emissions measured from Continuous Emissions Monitoring Systems and this 

showed even better correlation and a slope closer to unity. 
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Supplemental Information Figure 5.  Comparison of HTAP-EDGAR v2 2008 SO2 emissions 

with those derived from OMI over the eastern U.S.  HTAP emissions were calculated by 

summing over all grid-boxes within a 50 km radius of the emission location.  The slope of the 

best-fit line (blue) is 0.85 and the correlation coefficient is 0.86. 

 

 To provide a quantitative measure of how well our algorithm can locate a source we 

assume the peak in a hot-spot on the source map corresponds to the source location, considering 

single sources in the eastern U.S.  We employ an automated, two-dimensional peak finding 

algorithm to determine their co-ordinates and calculate the distance between these peak locations 

and the true co-ordinates of the sources.  The histogram of distances is shown in Supplemental 

Information Figure 6.  We find the average distance is 84 km with no values larger than 20 km. 
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Supplemental Information Figure 6.  Distribution of the distance between the actual source 

location and the location assigned to that OMI-identified source using a two-dimensional local 

peak finding routine.  The average ± 1 standard deviation, which can be interpreted as a 

geolocation error, is 8.2 ± 4.2 km.  Only single sources in the Eastern U. S. were considered. 

 

The uncertainty of regional emissions should be smaller than that of individual sources 

due to a cancellation of random errors.  Totalling HTAP emissions and OMI emissions for 

sources captured by both inventories we find agreement to better than 5%.  Also, we find on 

average that about half of the global SO2 source is captured with our method, with the undetected 

half coming from sources below the detection limit estimated at 40 kt/yr.  This is consistent with 

the distribution of sources globally in the inventories for a comparable detection limit as 

demonstrated in Supplemental Information Figure 7 where we used the bottom-up inventories to 

assess what fraction would be measureable for a given detection limits.  Globally, we find 40-

55% would be measured.  We also computed this for the different regions considered in Figure 3 

where up to 70% is measureable for a 40 kt/yr detection limit.  On this basis it is reasonable to 

conclude a discrepancy exists between OMI and bottom-up emissions for a region where OMI 

exceeds 70% of the bottom-up.   
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Supplemental Information Figure 7.  A comparison of the fraction of total, global 

anthropogenic SO2 emissions measurable for a given detection limit for two emission inventories 

and that found with OMI.  The HTAP-EDGAR v2 inventory (19), originally on a 0.1  0.1 

grid, was summed to 0.5  0.5 and 0.9  0.9 grids to better reflect the effective resolution of 

OMI emissions; MACCity (20) was left at its native 0.5  0.5 resolution.  The EDGAR v4.2 

emission curves are very similar to the HTAP-EDGAR curves.  The blue shading shows the 

range of values calculated (using the HTAP-EDGAR, 0.5) over all regions considered in Figure 

3c and d. 
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Comparisons of Average Columns and Downwind-Upwind Differences.   

The OMI maps shown in this work are based on three-year averages of SO2 columns in order to 

increase signal-to-noise.  We also focus on years during the first half of the OMI mission (2005-

2007 or 2007-2009) as this avoids the worst of the row anomaly
13

 and best matches the 

emissions information available for comparison.         

There are many examples in which the downwind-upwind column difference identified a 

source not apparent from the average SO2 column map, or excluded locations that might appear 

to be a source.  With very few exceptions it more closely corresponds to location of the source.  

A selection of some examples using the Google Earth overlays (Supplemental Information file 3) 

are shown in Supplemental Information Figure 8 and briefly discussed below.  These are based 

on 2005-2007 OMI data. 
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Average SO2 Column (2005-2007) SO2 Source Map (2005-2007) 

  

  
 

  

a 

b 
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Average SO2 Column (2005-2007) SO2 Source Map (2005-2007) 

  

  
  

d 

e 
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Average SO2 Column (2005-2007) SO2 Source Map (2005-2007) 

  

  

e 

f 
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Supplemental Information Figure 8.  Examples of OMI average SO2 column and source maps 

from the period 2005-2007 (Supplemental Information file 3).  Each row highlights a different 

location:   

a. Smelters in northern Canada.  Shown is the SO2 distributions from two large non-ferrous 

smelters (emissions between 100 and 200 kt/yr) in the province of Manitoba.  Due to 

frequent high winds their average column levels appear quite modest, about 0.2 DU.  

Their downwind-upwind difference, however, is much larger at about 0.8 DU, and in the 

case of Flin Flon, corresponds more closely to the actual location of the emission source.  

Map data: Google, Landsat. 

b. A power plant in New England, US.  The power plant (~30 kt/yr) does not appear at all in 

the mean column, but the downwind-upwind difference is able to detect it and locate it to 

within about 11 km of its true location.  There is also a small local bias in the average 

column just offshore (to the south) that might be inferred as a source.  The downwind-

upwind difference was able to rule out this feature as a source.  Map data: Google, U.S. 

Geological Survey, SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat. 

c. Power plants in north Texas, U.S.  This shows the SO2 distributions from three power 

plants (emissions 50-100 kt/yr).  Map data: Google, Landsat. 

d. Power plants and oil & gas facilities along the eastern shore of the Red Sea.  The source 

map is better able to isolate and locate sources as compared to the average distribution.  

Map data:  Google, Landsat, ORION-ME, U.S. Dept. of State Geographer. 

e. Sources around Lake Erie (U.S. and Canada).  This shows the SO2 distributions from 

power plants and other sources around Lake Erie.  Note that the source map is able to 

pick out a second power plant, west of Cleveland, not evident in the average column.  

Sources here are from HTAP, a gridded inventory, and so may be a few km away from 

the true location.  Map Data: Google, NOAA, Landsat. 

f. Volcanoes near Sicily, Italy.  In the average column map, the enormous SO2 signal from 

Mt. Etna masks the smaller signal from Mt. Stromboli, whereas in the source map, Mt. 

Stromboli is readily apparent.  Map Data: Google, SIO, NOAA, U.S. Navy, NGA, 

GEBCO, U.S. Dept. of State Geographer, Landsat. 
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Emissions from Volcanic Sources.   

 

 

 

Supplemental Information Figure 9.  Time series of seasonal OMI-estimated emission rates 

from the Miyake-jima and Sakura-jima volcanoes (near the southern tip of Japan) are shown in 

red. The error bars represent 2-σ confidence intervals. Grey dots are daily emission estimates 

provided by the Japan Meteorological Agency. The grey vertical bars represent minimum and 

maximum values. 
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Supplemental Information Figure 10.  Comparison of OMI-derived and Aerocom
13

 volcanic 

emissions.  Scatterplot of OMI-derived annual mean volcanic emissions and the passive 

outgassing component from the Aerocom volcanic database emissions, both averaged over 2005-

2010.  The correlation coefficient is 0.36.  The shaded area represents the region in which OMI 

emission are at least a factor of 5 larger than Aerocom emissions and which we consider as 

missing sources.  Some noteworthy volcanoes are identified. 
 

 

Relation to previous work.   

Streets et al.
14

 provides an excellent review on the application of satellite remote sensing for 

constraining or deriving emissions information.  We elaborate here on some of the more relevant 

studies that preceded this publication.  Leue et al.
15

 were the first to examine the downwind 

decay of pollution derived from satellite observations to infer emissions, in this case NO2 from 

the Global Ozone Monitoring Instrument.  Beirle et al.
16

 exploited the higher spatial resolution of 

OMI and applied a more advanced fitting procedure to derive NOx (where NOx=NO+NO2 is 

largely emitted in the form of NO but rapidly converted to NO2) emissions from several point 

sources.  Fioletov et al.
2
 and de Foy et al.

17
 advanced this even further employing so-called 
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exponential-modified Gaussian distributions to parameterize the downwind distributions of some 

U.S. sources.  However, all these studies required that the location of the emissions be known 

beforehand and were of limited geographical scope.   
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