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Space-based detection of missing sulfur dioxide
sources of global air pollution
Chris A. McLinden1*, Vitali Fioletov1, MarkW. Shephard1, Nick Krotkov2, Can Li2,3,
Randall V. Martin4,5, Michael D. Moran1 and Joanna Joiner2

Sulfur dioxide is designated a criteria air contaminant (or
equivalent) by virtually all developed nations. When released
into the atmosphere, sulfur dioxide forms sulfuric acid and fine
particulate matter, secondary pollutants1 that have significant
adverse e�ects on human health2–5, the environment1 and the
economy5. The conventional, bottom-up emissions inventories
used to assess impacts, however, are often incomplete or
outdated, particularly for developing nations that lack compre-
hensive emission reporting requirements and infrastructure.
Here we present a satellite-based, global emission inventory
for SO2 that is derived through a simultaneous detection,
mapping and emission-quantifying procedure, and thereby
independent of conventional information sources.We find that
of the500orso largesources inour inventory,nearly40arenot
captured in leading conventional inventories. These missing
sources are scattered throughout the developingworld—over a
third are clustered around the Persian Gulf—and add up to 7 to
14Tg of SO2 yr−1, or roughly 6–12%of the global anthropogenic
source. Our estimates of national total emissions are generally
in linewith conventional numbers, but for some regions, and for
SO2 emissions fromvolcanoes, discrepancies can be as large as
a factor of three or more. We anticipate that our inventory will
help eliminate gaps in bottom-up inventories, independent of
geopolitical borders and source types.

Oxidation of sulfur dioxide (SO2) leads to the formation of sulfu-
ric acid and fine particulate matter1 which, between them, are asso-
ciated with negative health outcomes such as cardiovascular disease
and cancer2 and ecological impacts on soil, forests and freshwater1.
Understanding current levels of SO2 and its products and predicting
their future state require computer models that accurately represent
the chemical and physical processes in the atmosphere. However,
underpinning these models and arguably the single most important
factor governing their predictive capability is their description of
emissions. Virtually all models rely on ‘bottom-up’ inventories that
are based in part on indirect information such as activity data and
emission factors. Despite this critical link, these bottom-up invento-
ries are often incomplete, suffer from regional inconsistencies, and
are typically outdated by the time they are compiled6.

Satellites provide an ideal platform for closing this information
gap, particularly for remote or otherwise inaccessible locations.
There are a variety of methods used to derive SO2 emission
information from satellite measurements6–11, but most rely on
prior knowledge of the location of the source. As SO2 has a
short atmospheric lifetime, larger isolated sources can sometimes

be identified as ‘hotspots’ on maps of the average distribution.
However, winds can obscure the true source location and
weaker sources are often masked by stronger ones. Furthermore,
troublesome measurement biases can appear as false sources, and
near the detection limit it becomes difficult to distinguish between
a weaker source and measurement noise.

Here we present a new method for identifying and mapping
SO2 emission sources using satellite measurements of atmospheric
composition that is independent of air quality models and
requires no prior assumptions as to their location (Methods). We
analyse measurement of SO2 (ref. 12) from the Ozone Monitoring
Instrument13 (OMI), which provides a vertically integrated number
density profile, or column. Each point on a high-resolution
(0.05◦×0.05◦) global grid is evaluated as a potential (or ‘test’) source
location—it is this evaluation scheme that is at the heart of our
method. Satellite-measured columns, merged with coincident wind
information from a meteorological reanalysis14, are repositioned
through a rotation about this test location such that, after rotation,
all of the wind directions are aligned15 (Methods and Supplementary
Fig. 1). If the difference between the average downwind and average
upwind column (Supplementary Fig. 2) exceeds a specified margin
(Methods), this location is flagged as a source. Iterating over the
entire grid generates a ‘source map’ in which emission sources
appear as very localized hotspots. Once the locations of the sources
are known their emissions are calculated10.

Our approach is evaluated using OMI SO2 columns over the
eastern US, where the emission locations and intensities are well
known. Figure 1 shows the map of average SO2 columns and
the corresponding source map. Virtually all sources greater than
40 kt yr−1 appear on the source map and to within about 10 km
of their true location (Methods and Supplementary Figs 5 and 6).
Figure 1 also shows the application of our algorithm over
southeastern Europe. Here we find examples of sources not found
in the widely used Hemispheric Transport of Air Pollutants16
(HTAP) emissions inventory. There are many instances where the
downwind–upwind difference is able to detect sources, locate them,
and better discriminate between sources/non-sources better as
compared with the average column (Supplementary Information).
One example is that of Mount Stromboli, a volcanic source of SO2
just north of Sicily, which we successfully identify from underneath
the extremely large SO2 signal fromMount Etna (Fig. 2b,c).

We applied our algorithm globally to identify SO2 sources not
included in leading bottom-up emission inventories. We use the
HTAP inventory16 for the year 2008 as our primary reference but
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Figure 1 | Demonstration of source-detection method over selected regions. a, Average 2007–2009 SO2 columns from the OMI satellite instrument over
eastern USA expressed in Dobson units (Methods). Also shown are the locations of large power plants. b, Eastern US source map (or the
downwind–upwind di�erence), also in Dobson units, and the locations of sources from a identified by OMI and those not found. c, Average SO2 column
over eastern Europe and sources from the HTAP16 inventory. d, Eastern European source map, emission sites identified and not found, and identified
sources that are missing (Methods) from HTAP.
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Figure 2 | Satellite detection of emission sources in the Persian Gulf. Shown are the SO2 and NO2 (or NOx) emission source maps from 2007–2009 OMI
data along with satellite imagery that shows night lights from cities and gas flaring sites19. M indicates a source that is missing from the three reference
emission inventories. The numbers represent cities: 1, Kuwait City; 2, Al Jubail; 3, Manama; 4, Mesaieed. UAE, United Arab Emirates.
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Figure 3 | Summary of satellite-derived missing sources and inventory totals. a, SO2 sources identified that were found to be missing from three leading
bottom-up inventories16–18. Each nation is colour-coded according to its total fraction of SO2 emissions that are missing, relative to its total national
emissions (the sum of HTAP and missing). b, Time series of the total satellite-derived emissions by source type. c, Time series of satellite-derived
anthropogenic emissions for selected regions. d, Time series of the ratio of satellite-measured anthropogenic emissions to those from an annual
SO2 inventory25.

we also consider two other state-of-the-science global, gridded,
bottom-up inventories17,18. Our search yielded 481 locations that
we were able to authenticate as sources through a two-step process
(Methods): a statistically significant emissions retrieval; and an
identification of the emitting facility using a combination of satellite
imagery, external databases, and/or other resources19,20. From this
process, we determined that 75 are volcanic SO2 sources that
passively outgas SO2 (eruptive episodes were excluded from our
analysis; see Methods). Of the remaining 406 sources, 340 had
significant emissions in the year 2008 and 301 of these correspond
to sources in at least one of the three emission inventories. This
leaves 39 sources that do not correspond to any of the inventories we
considered, whichwe refer to as ‘missing’ (that is, a real source that is
unknown to the emissions community, known but unquantified or
significantly under-reported, or incorrectly located). We also find
several weak, false positives over locations at very high elevation
or that are ice-covered. In addition there are 20 weak sources that
could not be authenticated; however, considering that only one false
positive was found in the eastern US, we suggest some may be real.

Of the 39 verified missing sources, 14 are located in the Middle
East, and 12 of these are oil and gas-related. The SO2 source map
in Fig. 2 shows hotspots corresponding to several large oil refinery
complexes in and around the Persian Gulf, most of which are
not accounted for in any of the emission inventories considered.
The analogous OMI nitrogen dioxide21 (NO2, a proxy for nitrogen
oxides, or NOx) source map (Fig. 2c) shows that these locations are
modest NOx sources that we have determined are also missing from
NOx emission inventories. Night-light satellite imagery19 (Fig. 2b)
reveals that most are gas flaring locations. In contrast, the largest
sources of NOx correspond to urban areas where lights are brightest
and SO2 emissions are low. Overall, the three types of data (SO2,
NO2, lights) portray a consistent picture. TheseNOx sources are also
expected to be sources of CO2, an important greenhouse gas, as both
are by-products of combustion22, yet we find some of these missing
NOx sources are also missing from CO2 inventories18,23.

Globally in 2008, emissions from the 39 missing SO2 sources
total 7 Tg[SO2] yr−1, or roughly 6% of the anthropogenic total16–18.
Figure 3a shows the location and size of each missing source
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as well as their national totals expressed as a fraction of
their (HTAP+missing) national total. Total OMI-derived
anthropogenic emissions (Fig. 3b) show a decline from a peak
in 2006–2007 that is driven primarily by a reduction in power
plant emissions. Regionally (Fig. 3c), US, European and Chinese
emissions show declines, with emissions from India increasing.
The 2011–2014 declines in Chinese emissions are more consistent
with projections based on fully implemented emission controls24.
Figure 3 also suggests that if emissions from China, India, Russia
and the Middle East continue along their current trajectories, they
will all be of comparable magnitude by the end of the decade.

OMI-derived regional emission totals, shown as fractions of an
annually varying bottom-up inventory25 in Fig. 3d, are typically
near 0.5 for most regions and fairly constant with time. This
indicates that despite capturing only about half of the anthropogenic
total, a consequence of its 40 kt yr−1 detection limit, our method
can reliably track changes in regional emissions. The bottom-
up inventories similarly indicate that roughly half of their totals
are from sources that exceed 40 kt yr−1 globally (and 30–70%
regionally; Supplementary Fig. 7), providing additional quantitative
verification to our OMI-derived regional totals. Extending this
reasoning further, we estimate the upper limit to the total (including
an unmeasured 50%) from missing sources to be 12% of global
anthropogenic emissions. Significant departures from this in which
OMI is as large or larger are seen for Russia, the Middle
East and Mexico, which points to discrepancies between OMI-
derived emissions and the bottom-up inventories that should be
investigated.Mexico is particularly striking in thatwe find emissions
are increasing slightly as compared with a 60% decline in reported
emissions between 2005 and 201125.

The total emissions from the 75 continuously emitting volcanoes
detected by OMI vary between 20 and 25 Tg[SO2] yr−1 (or
up to half the OMI anthropogenic total), with many volcanoes
exhibiting significant inter-annual variability. As roughly 90% of
active volcanoes have rudimentary or no monitoring26, this natural
SO2 source represents a significant gap in our knowledge of its global
source. We find good agreement between OMI-derived emission
estimates and those measured from Japanese volcanoes (Methods
and Supplementary Fig. 9), one of the few areas actively monitored.
However, a comparison with a global volcanic emissions database27
often used in air quality models28 shows a weak correlation,
with emissions from 31 volcanoes differing by a factor of 3 of
more (Supplementary Fig. 10). Using analogous criteria as for
anthropogenic sources, 17 OMI-identified volcanoes qualify as
missing sources, with emissions totalling 8 Tg[SO2] yr−1 (Methods).

Emissions from the anthropogenic and volcanic missing sources,
taken together, total between 15 and 30 Tg[SO2] yr−1 (again
assuming only 50% can be detected), representing roughly 10–20%
of the total, global SO2 input into the atmosphere. Their omission
from model-based mortality and environmental impact studies can
give rise to biased findings at the local, regional and global29 scales,
potentially leading to misinformed policy and mitigation decisions.
Gaps in pollutant inventories are likely to extend beyond SO2 as our
analysis of NOx in the Persian Gulf suggests. The utility of satellite
data for further closing these gaps now seems clear, be it through
the application of algorithms such as this one to other pollutants, or
improved detection limits from new satellite instruments, including
the upcoming geostationary air quality constellation30.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Satellite observations and meteorological reanalysis. Observations of SO2 and
NO2 from the Ozone Monitoring Instrument13,31 (OMI, 2004–present), on-board
the NASA Aura satellite, are used in this study. These gases are quantified in terms
of a vertical column density (expressed in Dobson units, where 1 DU
=2.69×1016 molecules cm−2), or simply column, and represent the vertically
integrated number density between the surface and the tropopause. Specifically,
orbit-based (Level 2) SO2 columns from the Principal Component Analysis data
product12 and NO2 columns from the NASA Standard Product21 version 2.1 are
used. Data are filtered using a maximum radiative cloud fraction of 0.2 and
maximum solar zenith angles of 70◦/75◦ for SO2/NO2. Data from OMI track
positions affected by the row anomaly32 were excluded, and of the 60 across-track
positions measured by OMI, only positions 11–50 were used, which correspond to
those with a finer spatial resolution.

Filtering of SO2 from explosive volcanic eruptions is performed using a simple
screening algorithm31. Daily 99th percentiles of the SO2 columns within 300 km of
a source are calculated. All data from a day in which this exceeds a threshold are
excluded. We used a threshold of 15DU for sources larger than 500 kt yr−1, 10DU
for sources between 100 and 500 kt yr−1, and 5 DU for smaller sources. Most days
removed coincide with a period immediately following known eruptions.

The sensitivity of OMI to SO2 in a particular scene is quantified through an air
mass factor (AMF)31. AMFs are calculated using radiative transfer models that
simulate the absorption and multiple-scattering in the atmosphere and reflection
off the surface. To improve the accuracy of the SO2 emissions, we have recalculated
AMFs for each OMI observation largely following the approach of ref. 33,
accounting for parameters such as surface reflectivity, solar zenith angle, viewing
geometry, surface pressure, and cloud fraction and pressure. The SO2 profile shape
is estimated on the basis of the elevation of the source and the climatological
boundary layer height (specific to the month, source location, and time of day)34.
Between these two heights the profile is assumed to have a constant mixing ratio
and above and below these heights it is assumed to be zero. We also included an
aerosol layer between the surface and the top of the boundary layer, scaled so that
its vertical optical depth matches that of a satellite-derived annual mean
climatology at 0.5◦×0.5◦ resolution35. It is worth noting that one common source
of profile information used in the calculation of AMFs, output from air quality
models, cannot readily be used to determine emissions from missing sources as the
simulated profiles will resemble background conditions owing to the lack of
nearby sources.

Wind information is obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) interim reanalysis (ERA-interim)14. This is a
four-dimensional variational analysis system with a spatial resolution of about
80 km with output available every 6 h. We interpolate the vertical profiles of the
zonal and meridional wind components in time and space to the location of the
each OMI pixel. We then average each wind component between the elevation of
the source and 1 km above. These mean wind components are then converted to a
wind speed and direction.

Bottom-up SO2 emission inventories. Three gridded emission inventories are
considered. The primary reference is the HTAP (Hemispheric Transport of Air
Pollution) - EDGAR (Emission Database for Global Atmospheric Research)
version 2 high-resolution gridded emission inventory16 for the determination of
missing sources. HTAP is available for 2008 and 2010 on a 0.1◦×0.1◦
latitude–longitude grid. We also use the EDGAR v4.2, also available on a
0.1◦×0.1◦ grid, for 200818, and the MACCity (Monitoring Atmospheric
Composition and Climate—CityZen) inventory, on a 0.5◦×0.5◦ grid, for 200817. In
addition, for the SO2 emission time series analysis in Fig. 3d we used an annually
(2005–2011) varying inventory at the national or regional level25. All give generally
consistent national and global totals for the year 2008.

Emission mapping methodology. A global, 0.05◦×0.05◦ grid is defined where
each grid point is a potential source location, referred to as a test source. All filtered
satellite column observations over a specified time frame—we considered multiple
three-year blocks—that are within a distance of 100 km of the test source are
considered. These are rotated about the location of the test source such that, after
rotation, the wind vectors of all observations are aligned10,11,16. This process ensures
that the relative upwind–downwind/cross-wind distance from the observation to
the test source is preserved (Supplementary Fig. 1).

After rotation the upwind and downwind averages are calculated. The upwind
average column (Ωu) is computed over all columns that are within a rectangle
defined by±a (km) about the test source in the cross-wind direction and between
b1 and b2 (km) upwind of the test source (Supplementary Fig. 2). The downwind
average column (Ωd) is likewise computed for a rectangle±a and between b1
and b2 downwind of the test source. The choice of a, b1 and b2 are based on
multiple factors including the effective ‘size’ of a typical source as seen by OMI, the
lifetime of the gas (several hours for NO2 and SO2), and a trade-off between signal
and resolution. For example, b1 needs to be of the order of the spatial extent of the

source so that there will be a real difference in the upwind and downwind direction
whereas a and b2 need to be large enough to allow for a sufficiently large number of
data points but small enough that a reasonable resolution is maintained. An ideal
choice for OMI SO2 and NO2 was found to be a= 15 km, b1=15 km and
b2=35 km.

Also calculated are the standard deviations of the upwind and downwind
averages and from these the signal-to-noise ratio (SNR) is calculated using
equation (1):

SNR=
Ωd−Ωu
σ�u√
Nu
+

σ�d√
Nd

(1)

where σ�d and σ�u are the downwind and upwind standard deviations, and Nd and
Nu are the number of observations. Note that alternative SNR definitions were
tested but the above definition was found to produce the most consistent results. If
the SNR exceeded a threshold value then the test source was taken as a real source
(subject to confirmation). For the analysis performed over the eastern US where
source locations are precisely known, a SNR value of 2 led to identification of
sources larger than about 30–40 kt yr−1, but with little or no ‘false positives’.
Further discussion on the method and its sensitivities is provided in the
Supplementary Information.

Determination of emissions and their uncertainties. Once the location of the
source has been determined, the algorithm of ref. 10 is used to quantify its
emissions. This method is consistent in that it uses the same basic approach—a
rotation about the reference location and then an examination of the downwind
behaviour. In this algorithm, a specialized three-dimensional (downwind–upwind
distance, cross-wind distance, and wind speed) function is fitted to the rotated
column data. The function is based on three parameters: an effective lifetime, a
width parameter, and a parameter that represents the total mass of the SO2, with
the emissions calculated assuming a mass balance; that is, as the ratio of mass to
lifetime. To stabilize the fit against noise, the lifetime and width parameters are
specified using the mean values derived from a subset of all emission sources
identified. Here, lifetime is set to 6 h and the width parameter is set to 20 km. These
may vary from location to location, but there is a cancellation of errors when an
inaccurate lifetime or width parameter is used due to the nature of the fitting
procedure. For example, when lifetime is in error by a factor of 2, the impact on the
emissions is less than 30%. The 10th and 90th percentiles of the distribution of
lifetime are 3 and 9.5 h, respectively (Supplementary Fig. 4).

There are several potential sources of error that need to be considered when
determining the overall uncertainty of the emissions (Supplementary Table 1).
Uncertainties in the SO2 columns themselves are estimated at 29%, uncertainties in
the emissions fitting are 37%+ 10–20 kt yr−1, and the uncertainties from the wind
fields are 22%. Combining these gives an uncertainty of 50% for larger sources
(>100 kt yr−1) and about 60% for smaller ones (<50 kt yr−1). Additional details are
provided in the Supplementary Information.

Methodology for authenticating a source or identifying a missing source. For a
peak on the source map to be verified as a real source it must meet the following
two conditions:

Possess a statistically significant emission rate10. We require that an annual
emission rate exceed its 3-sigma uncertainty, where sigma is the uncertainty from
the fit. This need only be the case for one of the 10 years of OMI measurements.

A facility (or volcano) must be identified within a radius of 20 km of the test
source location of a size and type (for example, coal-burning power plant) that
could be emitting appreciable SO2. This is determined using a variety of external
data sources. Some of the more useful ones are listings of coal-burning power
plants21, the black marble, or night-lights, satellite imagery20, which shows
locations where gas flaring is occurring, Google Earth terrain images and
associated (linked) photos, as well as general Internet searches. In some cases more
than one candidate facility was identified and here we made a judgement call.

For a source to be identified as a so-called missing source, it must have
statistically significant emissions (see above) for 2008 and be absent from each of
the three 2008 gridded, bottom-up emission inventories considered16–18. We
determined this by integrating each one over a 50 km radius from the location of
the source under consideration. For each inventory we determine whether their
integrated emissions are less than 8 kt yr−1 (our detection limit is about 40 kt yr−1)
or a factor of five smaller than our emissions estimate. If either of these conditions
is true for all three inventories, we flag this location as a missing source. The value
of 50 km is based on an analysis of several case studies that suggest that for the
OMI pixel size sources located within about 50 km of one another are interpreted
as one with total emissions close to the sum of their emissions. In addition, the use
of a 50 km radius leads to the best correlation in a comparison with US sources.

These criteria lead to the identification of 39 missing SO2 sources whose
emissions total 6.8 Tg[SO2] yr−1. As a sensitivity test we integrate the bottom-up
inventories over a radius of 80 km (instead of 50 km) and require them to be at least
a factor of 8 (instead of 5) smaller than OMI. There are still 21 sources that meet
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these more stringent criteria, totalling 4.5 Tg[SO2] yr−1. Again, considering an
undetected 50%, this amounts to 4–8% of the global anthropogenic total.

Inventory evaluation. Several comparisons between our emission inventory and
the bottom-up reference inventories16–18 were performed. This included a direct
comparison of emission rates between our inventory and HTAP in the eastern US,
a quantification of how well our algorithm can locate the emission sources, again
using eastern US sources, and a comparison of regional totals. Additional details
are available in the Supplementary Methods, but to summarize: we find biases less
than 15% for individual sources and a correlation of 0.86 (Supplementary Fig. 5),
differences to within 5% for regional totals considering the sources contained in
both inventories, and an ability to locate an individual to 8± 4 km
(Supplementary Fig. 6).

Another important finding was that, on average, about half of the global SO2

source is captured with our method, with the undetected half coming from sources
below the detection limit estimated at 40 kt yr−1 (Supplementary Fig. 7). This is
consistent with the distribution of sources globally in the inventories for a
comparable detection limit. We also computed this for the different regions
considered in Fig. 3 where up to 70% is measurable for a 40 kt yr−1 detection limit.
On this basis it is reasonable to conclude that a discrepancy exists between OMI
and bottom-up emissions for a region where OMI exceeds 70% of the bottom-up.

Volcanic sources. Emissions of SO2 through passive outgassing from 75 volcanoes
have been detected and quantified. The locations of these volcanoes are shown in
Fig. 3. We find that the emissions from some volcanoes show large inter-annual
variability whereas others are nearly constant over the 10-year OMI time period
(Supplementary Information). Comparisons between our SO2 emissions estimates
with those derived using in situmonitors by the Japan Meteorological Agency for
two Japanese volcanoes shows consistency in both magnitude and seasonal
variability (Supplementary Fig. 9).

On a global scale, estimates of the annual volcanic SO2 input into the
atmosphere vary widely36. One volcanic SO2 emissions database, Aerocom27, is
recommended by the HTAP-EDGAR v2 authorities. Further, several leading
models also use the volcanic Aerocom emissions28,37; the GEOS-Chem model,
http://wiki.seas.harvard.edu/geos-chem/index.php/Volcanic_SO2
_emissions_from_Aerocom).

The Aerocom database covers the years 1979–2010, providing a six-year
overlap period with OMI (2005–2010). We compared our emissions to Aerocom by
matching volcanoes considering only the passive outgassing component, and then
integrating Aerocom over all other volcanic sources in a 50 km radius. There is little
correlation between the two inventories (Supplementary Fig. 10) with many of the
Aerocom emissions based on fill values that are constant with time. Changing the
integrating radius had no impact on the correlation. If we use the same missing
source criteria here; that is, requiring OMI emissions to be a factor of five larger
than those from the Aerocom data, 17 volcanoes are identified whose emissions
total 8.8 Tg[SO2] yr−1. OMI emissions from Ambrym, to the east of Australia,

are 2,500 kt yr−1, and a factor of 42 larger than Aerocom for the overlap period.
Meanwhile, OMI emissions from Nevado del Ruiz in Columbia are a factor
of 25 smaller than Aerocom for the overlap period, but increase rapidly
after 2010.

Data availability. All data used in this work are publicly available. Level 2 Principal
Component Analysis SO2 and Standard Product version 2.1 NO2 vertical column
density data from OMI, used to identify emission source locations and derive the
SO2 emissions inventory, are available from the Goddard Earth Science and
Information Service Center (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/
OMI)31. Wind reanalysis data from ECMWF ERA-interim reanalysis14 was
downloaded from http://apps.ecmwf.int/datasets/data/interim-full-daily.

HTAP-EDGAR v2 emissions data16 were downloaded from
http://edgar.jrc.ec.europa.eu/htap_v2/index.php?SECURE=123, EDGAR v4.2
emissions data18 were downloaded from http://edgar.jrc.ec.europa.eu/
overview.php?v=42, MACCity emissions data17 were downloaded from
http://accent.aero.jussieu.fr/MACC_metadata.php, and ODIAC emissions data23
were downloaded from http://db.cger.nies.go.jp/dataset/ODIAC/emission
_dataset.html. Night-lights (black marble) satellite imagery19 was obtained from
NASA’s Earth Observatory (http://earthobservatory.nasa.gov/IOTD/
view.php?id=79803). The Aerocom volcanic SO2 emissions database27 was
downloaded from http://aerocom.met.no/download/emissions/HTAP.

Emission summary files and kml (Google Earth) overlays created as part of this
work are available as Supplementary Information.
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